A Recursive Algebraic Coloring Technique for Hardware-efficient Symmetric Sparse Matrix-vector Multiplication

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient multithreaded untransposed, transposed or symmetric sparse matrix-vector multiplication with the Recursive Sparse Blocks format

In earlier work we have introduced the “Recursive Sparse Blocks” (RSB) sparse matrix storage scheme oriented towards cache efficient matrix-vector multiplication (SpMV ) and triangular solution (SpSV ) on cache based shared memory parallel computers. Both the transposed (SpMV T ) and symmetric (SymSpMV ) matrix-vector multiply variants are supported. RSB stands for a meta-format: it recursively...

متن کامل

Efficient Sparse Matrix-Vector Multiplication on CUDA

The massive parallelism of graphics processing units (GPUs) offers tremendous performance in many high-performance computing applications. While dense linear algebra readily maps to such platforms, harnessing this potential for sparse matrix computations presents additional challenges. Given its role in iterative methods for solving sparse linear systems and eigenvalue problems, sparse matrix-v...

متن کامل

Utilizing Recursive Storage in Sparse Matrix-Vector Multiplication - Preliminary Considerations

Computations with sparse matrices on “multicore cache based” computers are affected by the irregularity of the problem at hand, and performance degrades easily. In this note we propose a recursive storage format for sparse matrices, and evaluate its usage for the Sparse Matrix-Vector (SpMV) operation on two multicore and one multiprocessor machines. We report benchmark results showing high perf...

متن کامل

Sparse Matrix-Vector Multiplication for Circuit Simulation

Sparse Matrix-Vector Multiplication (SpMV) plays an important role in numerical algorithm in circuit simulation. In this report, we utilize Message Passing Interface (MPI) to parallelize the SpMV. In addition, resulting from the circuit simulation matrix formulation, the circuit systems are often represented as unstructured, not evenly-distributed sparse matrices. Therefore, we automatically de...

متن کامل

Autotuning Sparse Matrix-Vector Multiplication for Multicore

Sparse matrix-vector multiplication (SpMV) is an important kernel in scientific and engineering computing. Straightforward parallel implementations of SpMV often perform poorly, and with the increasing variety of architectural features in multicore processors, it is getting more difficult to determine the sparse matrix data structure and corresponding SpMV implementation that optimize performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Parallel Computing

سال: 2020

ISSN: 2329-4949,2329-4957

DOI: 10.1145/3399732